И. И. Маркеев, В. Б. Геннадиник

ЗАДАЧИ АВТОМАТИЗИРОВАННОГО СБОРА И КОНТРОЛЯ ПЕРВИЧНОЙ ИНФОРМАЦИИ В УПРАВЛЕНИИ ОХРАНОЙ ОКРУЖАЮЩЕЙ СРЕДЫ

Рассматриваются элементы технологии автоматизированного сбора и контроля первичной информации на примере компонента системы управления состоянием окружающей среды территориального органа государственного регулирования, предназначенного для организации процесса согласования разрешений на выбросы в атмосферный воздух.

Автоматизированный сбор, технология, первичная информация, экология территории, управление.

Введение

Эффективность информационных систем в управлении охраной окружающей среды (УООС) низка, что связано не в последнюю очередь с особенностями сбора и анализа экологической информации [6]. Особенностью данного класса систем можно считать большое количество источников первичной информации (практически все юридические лица, а зачастую и физические, в той или иной степени являются субъектами хозяйствования, чья деятельность нормируется и согласуется органами УООС).

В иерархических управленческих системах внесение данных происходит преимущественно на нижнем уровне иерархии, т. е. функции внесения данных пытаются максимально перенести на объект управления (в случае УООС — на природопользователей). Соответственно на верхнем уровне информационной системы происходит смещение функции от внесения данных (ОLTP системы) к контролю достоверности и анализу данных (ОLAP системы) [1, 5].

1. Система управления состоянием атмосферного воздуха

В качестве показателей состояния атмосферного воздуха, как правило, используются определяемые методами аналитической химии концентрации загрязняющих веществ. Нормирование состояния атмосферного воздуха заключается в определении предельно допустимых концентраций (ПДК), превышение которых считается опасным для окружающей среды (ОС) и здоровья [10].

Источники выбросов в атмосферу делятся на две группы: стационарные и передвижные (автомобили), отличающиеся как механизмом воздействия, так и способами управления (выбросы от передвижных источников не нормируются). Стационарные источники делятся по форме (точечные, линейные и площадные) и мощности (четыре категории опасности). От мощности источника зависит регламент его контроля.

Воздействие на ОС со стороны источников обычно определяется расчетным методом в соответствии с утвержденными методиками [3], учитывающими вид деятельности, оборудование и условия производства. Характеристики источников техногенного воздействия на ОС могут быть разделены на две группы: квазипостоянные, определяемые оборудованием и часто сырьем, и переменные, зависящие от режимов эксплуатации, времени года и т. п.

Процесс нормирования заключается в разработке природопользователем типовой производственной деятельности, по материалам которой формиру-

ются Оценки воздействия на ОС (ОВОС) в целом и проекты по отдельным природным средам (том предельно допустимых выбросов — том ПДВ), утверждаемые в ходе государственной экологической экспертизы. Итогом нормирования является определение ПДВ загрязняющих веществ от источников, при которых не будут превышены уровни ПДК.

По данным проектов ПДВ разрабатываются оперативные нормативные документы — разрешения, определяющие сроком на год огрубленные нормативные воздействия на ОС с учетом текущих переменных характеристик источников воздействия [4]. В случае превышения ПДВ природопользователь оплачивает его по прогрессивной шкале.

Оперативный контроль воздействий, состояния ОС и соответствующие управляющие воздействия на природопользователей осуществляются органами государственного УООС и заключаются в проверке соответствия технологий объявленным параметрам, выполнении природоохранных мероприятий и инструментальных замерах концентраций загрязняющих веществ в выхлопах и в контрольных точках, определенных в томах ПДВ (рис. 1).

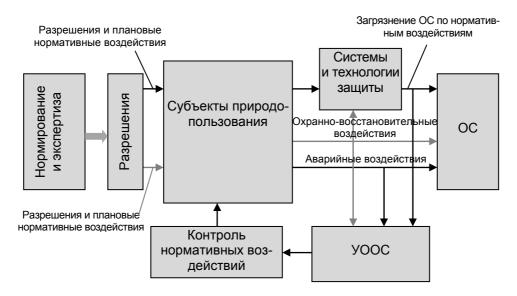


Рис. 1. Система УООС районного уровня

Таким образом, в существующей системе природопользования и охране ОС предусмотрены три этапа государственного управления:

- нормирование воздействий оценка воздействия на ОС (разработка томов ПДВ);
- оперативное нормирование воздействий в соответствии с проектными документами и с учетом сложившейся ситуации (выдача разрешений на выброс);
 - контроль воздействий и состояния ОС.

Соответственно типовой территориальный (уровня субъекта Федерации) экологический орган управления имеет процессно-ориентированную структуру и, наряду с остальными, включает в себя:

— «отдел экспертизы», осуществляющий экологическую экспертизу проектов и участвующий в нормировании воздействий;

- «отдел нормирования», собирающий первичную информацию, нормирующий воздействия (выдающий разрешения на выброс);
- «инспекторский отдел», проводящий натурные проверки воздействий и проверки состояния ОС.

2. Автоматизированная система регулирования воздействий на атмосферный воздух

Автоматизированный сбор и контроль первичной информации описан на примере компонента информационной системы управления состоянием окружающей среды, предназначенного для организации процесса согласования разрешений на выбросы в атмосферный воздух.

Под компонентом системы понимается совокупность автоматизированного рабочего места (APM) «Выбросы в атмосферный воздух» и информационной системы (ИС) «Согласование разрешений на выброс в атмосферный воздух».

2.1. Требования к инструменту сбора первичной информации

Эффективность информационной технологии определяется успешностью ее внедрения. Внедрению способствует сокращение рутинных операций по внесению и обработке информации. Как уже отмечалась, для контролирующих органов наиболее трудоемким является этап внесения первичных данных, в нашем случае определенных в томе ПДВ природопользователя нормативов выбросов по источникам и загрязняющим веществам. В этой ситуации очевидное решение заключается в передаче функции внесения заявки на разрешение непосредственно природопользователям.

Упрощенная схема внесения данных делает необходимым создание мощной системы приема информации. В процессе приема заявки должны проходить следующие стадии проверки [8]:

- соответствие структурных признаков заявки ее формы (наличие таблиц в заявке, строк и столбцов в таблицах);
- проверка и привязка к БД (базе данных) реквизитов-признаков заявки (определение природопользователя и временного интервала);
- актуальность справочных архивов: местных (участки) и федеральных (классификатор загрязняющих веществ);
- семантический контроль проверка правильности написания, сверка со списком синонимов;
 - проверка на нахождение значений в допустимых диапазонах;
- проверка на внутреннюю противоречивость данных (верность расчета вычисляемых полей, соблюдение балансов);
 - сравнение с ранее принятыми связанными данными и нормативами;
 - сравнение с аналогичными данными за предыдущий временной интервал.

На двух последних этапах проверки сравнивается передаваемая информация с данными, имеющимися в распоряжении контролирующего органа. Для имеющихся данных возможно определение допустимых диапазонов значений, выход согласуемых показателей за пределы определенных диапазонов сигнализирует о «подозрительных» ситуациях, требующих дополнительного рассмотрения.

Перенос функций внесения первичной информации на нижний уровень управления требует изменения структуры БД контролирующего органа. Все принимающие таблицы дополняются полем «Согласование данных», определяющим статус информации. В случае приема данных несколькими операторами необходимо добавить в таблицы время согласования и идентификатор оператора. Как правило, удобнее сразу записывать в БД все переданные све-

дения, анализировать их и согласовывать. Изменение задач сотрудников системы УООС влечет за собой изменение функций программного обеспечения — с OLTP на OLAP и, возможно, уплощение структуры БД.

В свою очередь, собственно к инструменту сбора первичной информации предъявляются требования:

- безопасность и обеспечение конфиденциальности передаваемых данных;
- наличие актуальных справочных архивов;
- узнаваемость электронных форм и документов.

Наличие встроенных в систему сбора первичной информации актуальных справочных архивов, совпадающих с архивами контролирующего органа, обеспечивает правильность заполнения заявок и их последующее успешное согласование.

Условием успешного внедрения на нижнем уровне новой схемы сбора данных является использование в качестве основы для разрабатываемых электронных документов существующей «бумажной» отчетности. Даже в случае нелогичности и/или избыточности существующих отчетов эффект их узнаваемости сотрудниками отчитывающихся с помощью новых технологий предприятийприродопользователей необходим хотя бы на первоначальном этапе [2, 5, 9].

2.2. APM «Выбросы в атмосферный воздух»

Используемое сотрудниками территориального экологического органа управления АРМ предназначено для учета, нормирования и контроля выбросов загрязняющих веществ в атмосферу субъектами природопользования. АРМ хранит и осуществляет анализ информации: о стационарных и передвижных источниках выбросов, нормативных и фактических выбросах, состоянии воздухоохранной деятельности на предприятиях, эффективности использования попутного газа, проектных и нормативных документах.

APM формирует по архивам и справочникам и распечатывает или передает в Microsoft Word или Excel следующие документы и отчеты:

- разрешения на выброс;
- список предприятий, отчитывающихся за выбросы в атмосферу;
- отчеты «2-ТП воздух»;
- сводные отчеты «2-ТП воздух» для произвольной выборки предприятий;
- отчет сотрудника о проделанной работе за произвольный период;
- отчет «Баланс по газу».

2.3. ИС «Согласование разрешений на выброс в атмосферный воздух»

Разработанная система является дополнением существующего АРМ «Выбросы в атмосферный воздух». С помощью ИС природопользователи могут самостоятельно подготовить заявку на разрешение и отправить его на проверку сотруднику соответствующего отдела контролирующего органа.

Пользователь ИС выполняет авторизацию (указывает логин и пароль), заполняет личную (контактную) информацию.

После этого он может просмотреть, но не корректировать перечень имеющихся в БД органа управления разрешений для своего предприятия (рис. 2).

На рис. 2 приведена экранная форма страницы просмотра и выбора разрешений. В верхней строке таблицы — согласованное разрешение с номером 45. Редактирование данного разрешения запрещено, но возможен просмотр данных. В следующей строке — разрешение, редактируемое в данный момент. Пользователь системы может продолжить редактирование данных разрешения (рис. 3), скопировать данные из предшествующего разрешения (№ 45) или очистить разрешение от записей.

Разрешения

Рис. 2. Управление разрешениями

На рис. 3 — экранная форма страницы редактирования разрешения. Пользователь изменяет значения максимального разового и валового ПДВ/ВСВ. В момент внесения производится проверка корректности введенных данных (порядок чисел, вхождение чисел в диапазон, соответствие ранее введенным данным).

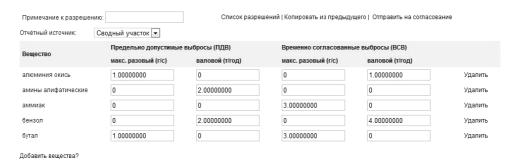


Рис. 3. Редактирование данных разрешения

Заявка на новое разрешение может быть сформирована на основе одного из ранее созданных разрешений (рис. 3). В этом случае все нормируемые вещества, ПДВ и ВСВ будут перенесены из ранее существовавшего документа и могут быть изменены пользователем ИС. Добавление новых нормируемых веществ осуществляется из справочника контролирующего органа (рис. 4).

На рис. 4 — экранная форма справочника загрязняющих веществ, сформированного из имеющегося в БД департамента полного справочника загрязняющих веществ. Пользователю предлагается сокращенная форма справочника, содержащая наиболее часто употребляемые сведения о загрязняющих веществах.

После формирования заявки она может быть отправлена на согласование в департамент. После принятия решения (отклонение или согласование) пользователь получает уведомление.

Наименование предприятия: ЗАО "Проектстройконструкция"	Название источника:		Пользователь: Пользователь Д	
Сводный участок Отметьте флажкам вещества которые трубуется добавить!				
Наименование вещества	Код	Тип	Класс опасности	
🗆 азота двуокись	0301	г/ж	2	
🗆 азота окись	0304	г/ж	3	
🗆 акропеин	1301	лос	2	
акрилонитрил	2001	лос	2	
🗆 альдегид пропионовый	1314	лос	3	
🗆 апьдегид маспяный	1310	лос	3	

Рис. 4. Справочник загрязняющих веществ

Рассматриваемая ИС построена с учетом требований, описанных в предыдущей части статьи.

Программное решение построено на базе трехзвенной архитектуры и «тонкого клиента». Достоинствами предлагаемого решения перед «толстым клиентом» являются [7]:

- простота модификации (нет необходимости обновлять программу на компьютерах пользователей);
- доступность (браузеры есть во всех распространенных операционных системах на большинстве аппаратных платформ).

Недостатками тонкого клиента можно считать:

- сложность программирования (для большинства сред визуального программирования под архитектуру толстого клиента процесс сводится к использованию примитивов, которые настраиваются под контекст);
- избыточность в описании презентационной логики (разные браузеры по-разному интерпретируют один и тот же набор CSS свойств и HTML тэгов).

Ввиду того, что разные браузеры поддерживают различные варианты отображения данных, и для повышения доступности было принято решение ориентироваться на работу приложения в наиболее распространенных браузерах [12]:

- Internet Explorer 5.5 и более поздних (далее «+»);
- Opera 8 +;
- Mozilla Firefox 2 +;
- Safari 3.1 +.

Указанные браузеры на момент написания статьи существуют для перечисленных в табл. наиболее распространенных операционных систем [13].

Работа пользователя с системой подразумевает частое сохранение малых порций данных (число, группа чисел, удаление строки из таблицы и пр.). Подобные операции могут быть существенно упрощены за счет использования принципов АЈАХ (Асинхронный Javascript и XML). Однако программное решение должно работать и без АЈАХ. По соображениям безопасности на некоторых компьютерах отключена поддержка javascript [11].

Современный подход к разработке программных систем часто подразумевает использование высокоуровневых технологий, таких как объектно-реляционная проекция (ORM, Object-relational mapping). ORM — технология программирова-

ния, которая связывает БД с концепцией объектно-ориентированного языка программирования, создавая «виртуальную объектную базу данных».

Соответствие наиболее распространенных браузеров и операционных систем

	Win 2000	Win XP	Win Vista	Mac 10.4	Mac 10.5
Firefox 3.+	+	+	+	+	+
Firefox 2.+		+			+
IE 7.0		+	+		
IE 6.0	+	+			
Opera 9.5+		+			+
Safari 3.1+				+	+

ORM позволит логической части программного решения взаимодействовать с частью данных (реляционной БД) по «правилам» языка программирования. Преимущество такого подхода можно проиллюстрировать на следующем примере: исходная таблица БД PRM (рис. 5) проецируется в объект Prm (Листинг 1).

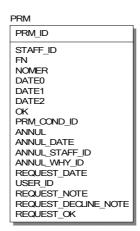


Рис. 5. Таблица БД PRM

Листинг 1 — Описание объектной проекции таблицы PRM: class Prm(models.Model):

```
prm_id = models.IntegerField(u'ИН разрешения', primary_key=True) staff_id = models.IntegerField(u'ИН сотрудника выдавшего разрешение') fn = models.ForeignKey(Plant, db_column='fn', verbose_name=u'ИН предприятия') nomer = models.CharField(max_length=10, verbose_name=u'номер разрешения') date0 = models.DateField(verbose_name=u'действительно от') date1 = models.DateField(verbose_name=u'срок действия до')
```

```
date2 = models.DateField(verbose_name=u'дата выдачи')
prm_cond_id = models.IntegerField(max_length=6, blank=True)
annul = models.CharField(u'аннулирован?', max_length=3, choices=YES_NO)
annul_date = models.DateField(u'дата аннулирования')
annul_staff_id = models.IntegerField(u'ИН аннулировавшего', max_length=6)
annul_why_id = models.IntegerField(u'ИН причина аннулирования')
ok = models.CharField(max_length=3, choices=YES_NO_CHOICE)
request_date = models.DateField(u'дата заявки', db_column=u'request_date')
request_ok = models.CharField(max_length=3, choices=YES_NO)
request_note = models.CharField(max_length=254,verbose_name=u'коментарий')
request_decline_note = models.CharField(u'коментарий', max_length=254)
```

В свою очередь, для объекта Prm вводится категоризация (наследование) на два класса потомка. Первый потомок, «writeablePrm», используется на презентационном уровне, на странице списка разрешений (рис. 2), а второй, «readablePrm»,— для просмотра уже выданных разрешений. Различие их — в разном уровне доступа к одним и тем же данным, исключающем ошибки ввода и злонамеренную подмену данных, и в разной логике обработки полученных от клиента данных.

```
Листинг 2 — Пример использования ORM классов: class Prm():
...
class readablePrm (Prm):
    def _is_editable (self):
        If not(self.is_solved()) and (self.request_date is None):
        return True
        return False
class writeablePrm(Prm):
    def save(self):
        return False # Сохранение невозможно.
```

Заключение

Описанные в статье принципы организации автоматизированного сбора и контроля первичной информации, а именно: передача функции внесения заявки на разрешение непосредственно природопользователям, сокращение рутинных операций по внесению и обработке информации (использование справочников, повторное использование внесенных данных), подробные проверки вносимых данных (порядок чисел, вхождение чисел в диапазон, соответствие ранее введенным данным) и пр. — могут быть учтены и использованы при построении систем для обработки большого количества исходных данных.

Описанные технологии позволят разработчикам аналогичных систем сконцентрироваться на прикладных задачах предметной области, отделить разные слои приложения (хранения, обработки и визуализации данных).

Использование ORM-технологий даст возможность на этапе описания модели хранимых данных определить часть логики обработки корректности вводимых пользователями данных (порядок чисел, вхождение чисел в диапазон, соответствие ранее введенным данным).

Приведенные в статье требования к доступности программного решения на базе тонкого клиента опираются на статистические данные [11–13].

ЛИТЕРАТУРА

- 1. *Маелинец Ю. А.* Анализ требований к автоматизированным информационным системам. М.: Изд-во «Интернет-университет информационных технологий ИН-ТУИТ.ру», БИНОМ. Лаборатория знаний», 2008. 200 с.
- 2. *Граничин О. Н., Кияев В. И.* Информационные технологии в управлении. М.: «Интернет-университет информационных технологий ИНТУИТ.ру», БИНОМ. Лаборатория знаний, 2008. 336 с.
- 3. *ОНД* 86. Госкомгидромет. Методика расчета концентраций в атмосфере воздуха вредных веществ, содержащихся в выбросах предприятий. 1987.
- 4. *Постановление* Правительства РФ от 2 марта 2000 г. № 183 «О нормативах выбросов вредных (загрязняющих) веществ в атмосферный воздух и вредных физических воздействий на него».
- 5. Бабушкин А. Г., Ядрышников И. Н. Построение систем электронного сбора информации для органов Госкомэкологии // Вестн. кибернетики. 2003. Вып. 2. С. 19–24.
- 6. Соловьев И. Г. Проблемы информатизации государственного управления природными ресурсами и охраной окружающей среды // Там же. С. 4–9.
- 7. Грекул В. И., Денищенко Г. Н., Коровкина Н. Л. Проектирование информационных систем. М.: «Интернет-университет информационных технологий ИНТУ-ИТ.ру», БИНОМ. Лаборатория знаний, 2008. 304 с.
- 8. *Геннадиник В. Б.* Сбор первичной информации в экологии // Налоги. Инвестиции. Капитал. Тюмень, 2003. № 5–6. С. 163–168.
- 9. Грекул В. И., Денищенко Г. Н., Коровкина Н. Л. Управление внедрением информационных систем М.: «Интернет-университет информационных технологий ИНТУ-ИТ.ру», БИНОМ. Лаборатория знаний, 2008. 224 с.
- 10. *Федеральный* закон об охране атмосферного воздуха (в ред. от 31.12.2005 № 199-ФЗ).
- 11. *Нильсен Л.* Web-дизайн: удобство использования Web-сайтов. М.: Вильямс, 2007.
 - 12. http://www.w3schools.com/browsers/browsers stats.asp.
 - 13. http://www.w3schools.com/browsers/browsers os.asp.

I. I. Markeyev, V. B. Gennadinik

GOALS OF AUTOMATED COLLECTION AND CONTROL OF INITIAL DATA UNDER ENVIRONMENTAL MANAGEMENT

The article considers elements regarding methods of automated collection and control of initial data illustrated with a component of environmental management system by a territorial board of state regulation intended to arrange coordination on permissions for atmospheric emissions.

Automated collection, technology, initial data, territorial ecology, management.