И. Г. Соловьев, А. Е. Паньшин

ЛИНЕАРИЗОВАННЫЙ АЛГЕБРАИЧЕСКИЙ АНАЛИЗ ПРЕДЕЛЬНЫХ ТЕМПЕРАТУРНЫХ СОСТОЯНИЙ МЕРЗЛЫХ ОСНОВАНИЙ, ОБУСТРОЕННЫХ ТЕРМОСИФОНАМИ

Рассмотрен способ моделирования распределения температур в мерзлых грунтах, обустроенных термосифонами, при помощи метода гармонической линеаризации. Приведены результаты численного анализа.

Современной расчетной основой в задачах конструирования подземных хранилищ [1, 2], стабилизации мерзлотных условий оснований промышленных сооружений [3] выступают схемы численного моделирования [4], обладающие высокой разрешающей способностью, но вместе с тем ресурсоемкие и не столь эффективные в стадии оптимальных технологических решений.

В статье развивается линеаризованный алгебраический анализ температурного поля массива мерзлого грунта, возмущенного свайным основанием, обустроенного морозильным устройством пассивного типа [6]. Переменные состояния системы характеризуют осредненные температуры конечных элементов массива, заданного симметричной послойно-цилиндрической структурой, представленной на рис. 1, где введены обозначения: площади торцов (S_{τ} , S_{u} , S_{j}), осредненные температуры ($\theta_{i\tau}$, θ_{iu} , θ_{ji}), площади боковой поверхности (L_{τ} , L_{u} , L_{j}) конечных элементов соответственно сваи, термосифона и j-го кольца, i-го слоя грунта, где $i=\overline{1,m}$, $j=\overline{1,n}$; ΔH — высота слоя.

Несмотря на приближенный характер анализа, техника алгебраического счета устанавливает явную зависимость между регулируемыми параметрами конструкции термосифона и кривой предельных температур грунта по вертикали вдоль сваи, что крайне важно в задачах структурно-параметрического синтеза системы автоматизированной мерзлотной стабилизации.

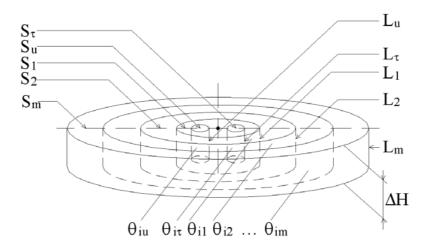


Рис. 1. Послойно-цилиндрическая структура системы

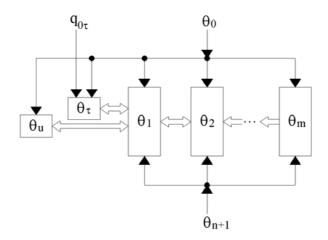


Рис. 2. Топологическая структура системы

Топологическая структура выделенных элементов теплодинамической системы, заданной послойно-цилиндрической схемой (рис. 1), представлена на рис. 2, где введены обозначения для векторов послойно-вертикального состояния температур цилиндров грунта: $\theta_i(t) = col[\theta_{1i}(t)...\theta_{ni}(t)]$, $i=\overline{1,m}$; сваи: $\theta_S = col[\theta_{1s}(t)...\theta_{1l}(t)]$; морозильника: $\theta_u(t) = col[\theta_{1u}(t)...\theta_{ku}(t)]$. Динамика послойно-вертикального распределения температур невозмущенного грунта обусловлена действием краевых температур «верха» — $\theta_0(t)$, «низа» — $\theta_{n+1}(t)$ и температуры, соответствующей состоянию m-го цилиндра, т. е. вектором $\theta_m(t)$. Рассматриваемая расчетная схема соответствует модели m-го приближения [7].

Основываясь на линейной теории теплопроводности [8], введем уравнения для образующих элементов (рис. 2).

Пусть c_s , λ_s — параметры теплоемкости и теплопроводности сваи, а λ_{1s} , λ_{0s} , λ_{ss} — приведенные теплопередачи: «свая — грунт», «свая — атмосфера», «свая — технологический объект», тогда теплодинамика сваи может быть задана системой дифференциальных уравнений вида

$$\tau_{s}\dot{\theta}_{s} = -\Lambda_{s}\theta_{s} + \chi_{1s}(J_{l}\theta_{1} - \theta_{s}) + \mathbf{1}_{1}\left(\frac{\lambda_{0s}}{\lambda_{s}}\theta_{0} + \frac{\lambda_{ss}}{\lambda_{s}}q_{0s}\right),\tag{1}$$

где $au_s = \Delta H c_s/\lambda_s$, $au_{1s} = \lambda_{1s} L_s/\lambda_s S_s$,

$$\Lambda_s = \text{blok diag} \left\{ \begin{bmatrix} 1 + \frac{\lambda_{0s} + \lambda_{ss}}{\lambda_s} & -1 \\ -1 & 2 \end{bmatrix} \cdots \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \right\},\,$$

 $q_{\scriptscriptstyle 0s}$ — постоянно действующие температурные возмущения «верха» сваи,

$$\mathbf{1}_{i} = col[0...010...0], \ \mathbf{1} = col[1...1], \ I_{k} = diag\{1...1\}, \ J_{k} = blok[I_{k} \mid 0].$$

Торцевой теплообмен «низа» сваи и морозильника малы и явно не учитываются.

Теплодинамику морозильника, основанного на сезонной циркуляции хладоагента с приведенной теплоемкостью $C_{\scriptscriptstyle u}$, будем задавать уравнением вида

$$\tau_{u}\dot{\theta}_{u} = -9\Lambda_{u}\theta_{u} + \chi_{u}\Lambda_{1u}(J_{k}\theta_{1} - \theta_{u}) + 9\mathbf{1}_{k}\theta_{0}, \tag{2}$$

где $au_u=c_u\Delta H$, $au_u=L_u/S_u$, $au_{1u}=diag\{\lambda_{1u}\dots\lambda_{ku}\}$ — матрица горизонтальных теплопередач,

 $\lambda_{_{\scriptscriptstyle M}}$ — матрица конвективного вертикального теплообмена,

$$\Lambda_u = \text{blok diag} \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \cdots \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \right\},$$

 ϑ — скорость циркуляции хладоагента, пропорциональная обратному перепаду температур «верха» и «низа» термосифона, например^{*)}

$$\vartheta = \mu_0 \left(-\theta_0 + \theta_{lm} \right) \tag{3}$$

или более точно

$$\vartheta = \mu_{\vartheta}(\mathbf{v}^T \mathbf{\theta}_u)_+, \ \mathbf{v} = col[-\nu_1 - \nu_2 \dots \nu_2 \ \nu_1], \ 0 \le \nu_{[k/2]} < \dots < \nu_2 < \nu_1 = 1,$$

 μ_{ν} — конструктивно назначаемый параметр мощности морозильника. С учетом сравнительно высокой скорости конвективной теплопередачи $(\tau_{\nu}/9 \to 0)$:

$$(\Im \mathbf{I} + \chi_u \Lambda_u^{-1} \Lambda_{1u})(\mathbf{\theta}_u - J_k \mathbf{\theta}_1) = \Im(\mathbf{1}_k \mathbf{\theta}_0 - J_k \mathbf{\theta}_1). \tag{4}$$

Теплодинамика однородного поля массива мерзлого грунта в границах первого цилиндра описывается системой уравнений [9] вида:

$$\tau \frac{d}{dt} F(\boldsymbol{\theta}_1) = -\Lambda \boldsymbol{\theta}_1 + \chi_1(\boldsymbol{\theta}_2 - \boldsymbol{\theta}_1) + \frac{\lambda_0}{\lambda} \boldsymbol{1}_1 \boldsymbol{\theta}_0 + \boldsymbol{1}_n \boldsymbol{\theta}_{n+1} + \chi_{1s} \boldsymbol{J}_l^T \boldsymbol{\delta} \boldsymbol{\theta}_s + \beta_u \boldsymbol{J}_k^T \Lambda_{1u} \boldsymbol{\delta} \boldsymbol{\theta}_u,$$
 (5)

где
$$\tau = \Delta H \, c/\lambda$$
, $\chi_1 = L_1/S_1$, $\chi_{1s} = \lambda_{1s} L_s/\lambda S_1$, $\beta_u = L_u/\lambda S_1$, $\delta \theta_s = \theta_s - J_I \theta_1$, $\delta \theta_u = \theta_u - J_k \theta_1$.

Функция $F(\theta_1)$ характеризует нелинейную динамику фазовых переходов влаги [10].

По аналогии с (5) для последующих $i=\overline{2,m-1}$ и краевого m-го цилиндров имеем

$$\tau \frac{d}{dt} F(\boldsymbol{\theta}_{i}) = -\Lambda \boldsymbol{\theta}_{i} + \chi_{i-1,i} (\boldsymbol{\theta}_{i-1} - \boldsymbol{\theta}_{i}) + \chi_{i} (\boldsymbol{\theta}_{i+1} - \boldsymbol{\theta}_{i}) + \frac{\lambda_{0}}{\lambda} \boldsymbol{1}_{1} \boldsymbol{\theta}_{0} + \boldsymbol{1}_{n} \boldsymbol{\theta}_{n+1},
\tau \frac{d}{dt} F(\boldsymbol{\theta}_{m}) = -\Lambda \boldsymbol{\theta}_{m} + \frac{\lambda_{0}}{\lambda} \boldsymbol{1}_{1} \boldsymbol{\theta}_{0} + \boldsymbol{1}_{n} \boldsymbol{\theta}_{n+1},$$
(6)

где $\chi_{i-1,i}=L_{i-1}/S_i$, $\chi_i=L_i/S_i$.

В основе гармонического (Фурье) анализа лежит представление о графиках краевых функций как синусоидальных кривых

$$\theta_0 = q_0 + c_0 \sin \psi$$
 , $\theta_{n+1} = q_{n+1} + c_{n+1} \sin \psi + b_{n+1} \cos \psi$, $\psi = \omega t$, $\omega = 2\pi/365$, (7) в которых время t исчисляется в сутках. Искомые переменные состояния уравнений систем $(1) \div (6)$ ищутся также в классе гармонических функций пер-

вого приближения, а именно: $v = \mu_9 \left(q_9 + c_9 \sin \psi + b_9 \cos \psi\right), \; \boldsymbol{\theta}_1 = \boldsymbol{q}_1 + \boldsymbol{c}_1 \sin \psi + \boldsymbol{b}_1 \cos \psi \; ,$

$$\delta \mathbf{\theta}_{u} = \mathbf{q}_{u} + \mathbf{c}_{u} \sin \psi + \mathbf{b}_{u} \cos \psi, \quad \mathbf{u}_{1} - \mathbf{q}_{1} + \mathbf{c}_{1} \sin \psi + \mathbf{b}_{1} \cos \psi, \quad \cdots \quad \cdots$$
(8)

 $⁽a(t))_+$ — положительная часть графика функции $a(t)_+$ $(a(t))_+ = 0$, если $a(t) \le 0$.

$$\delta \theta_s = \mathbf{q}_s + \mathbf{c}_s \sin \psi + \mathbf{b}_s \cos \psi$$
, $\theta_m = \mathbf{q}_m + \mathbf{c}_m \sin \psi + \mathbf{b}_m \cos \psi$.

Введем обозначения векторов, объединяющих искомые спектры приближенных решений:

 $x_u = col[q_u \ c_u \ b_u], \ x_s = col[q_s \ c_s \ b_s], \ x_i = col[q_i \ c_i \ b_i], \ i = \overline{1,m}$, (9) и вектора спектров краевых условий (7)

$$\mathbf{\eta} = col[q_0 \ c_0 \ q_{n+1} \ c_{n+1} \ b_{n+1}]. \tag{10}$$

<u>Утверждение 1</u>. В условиях $(1)\div(8)$ объединенная спектральная модель массива мерзлого грунта, сваи и термосифона, связывающая входо(10)-выходные (9) состояния системы, задается алгебраическими уравнениями вида:

$$\begin{cases} \mathbf{x}_{s} = -D_{s}\mathbf{x}_{1} + E_{s}\mathbf{\eta} + \mathbf{e}_{s}q_{0s}, \\ (\mu_{9}B_{9} + \chi_{u}A_{1u})\mathbf{x}_{u} = \mu_{9}(E_{u}\mathbf{\eta} - B_{9}I_{3}(J_{k})\mathbf{x}_{1}), \end{cases}$$
(11)

$$\begin{cases} \mathbf{x}_{1} = D_{1}\mathbf{x}_{2} + E_{1}\mathbf{\eta} + V_{s}\mathbf{x}_{s} + V_{u}\mathbf{x}_{u}, \\ \mathbf{x}_{2} = V_{2}\mathbf{x}_{1} + D_{2}\mathbf{x}_{3} + E_{2}\mathbf{\eta}, \\ \dots & \dots \\ \mathbf{x}_{m-1} = V_{m-1}\mathbf{x}_{m-2} + D_{m-1}\mathbf{x}_{m} + E_{m-1}\mathbf{\eta}, \end{cases}$$
(12)

В КОТОРЫХ
$$D_s = A_s^{-1}(A_s - \chi_{1s}I) \cdot I_3(J_I)$$
, $E_s = \frac{\lambda_{0s}}{\lambda_s} A_s^{-1} \mathrm{blok}[\mathbf{1}_1 \ \mathbf{1}_{l+1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0}]$, $\mathbf{e}_s = \frac{\lambda_{ss}}{\lambda_s} A_s^{-1} \mathbf{1}_1$,
$$D_1 = \chi_1 A_1^{-1}, \ E_1 = A_1^{-1} \mathrm{blok} \bigg[\frac{\lambda_0}{\lambda} \mathbf{1}_1 \ \frac{\lambda_0}{\lambda} \mathbf{1}_{n+1} \ \mathbf{1}_n \ \mathbf{1}_{2n} \ \mathbf{1}_{3n} \bigg], \ V_s = \chi_{1s} A_1^{-1} I_3(J_I^T),$$

$$V_u = \beta_u A_1^{-1} I_3(J_k^T \Lambda_{1u}), \ A_{1u} = I_3(\Lambda_u^{-1} \Lambda_{1u}), \ D_i = \chi_i A_i^{-1}, \ V_i = \chi_{i-1,i} A_i^{-1},$$

$$E_i = A_i^{-1} \mathrm{blok} \bigg[\frac{\lambda_0}{\lambda} \mathbf{1}_1 \ \frac{\lambda_0}{\lambda} \mathbf{1}_{n+1} \ \mathbf{1}_n \ \mathbf{1}_{2n} \ \mathbf{1}_{3n} \bigg],$$

где

$$\mathbf{A}_{s} = \begin{bmatrix} \Lambda_{s} + \chi_{1s}I & O & O \\ O & \Lambda_{s} + \chi_{1s}I & -\omega\tau_{s}I \\ O & \omega\tau_{s}I & \Lambda_{s} + \chi_{1s}I \end{bmatrix}, \ \mathbf{E}_{u} = \begin{bmatrix} q_{9}\mathbf{1} & \frac{c_{9}}{2}\mathbf{1} \\ c_{9}\mathbf{1} & q_{9}\mathbf{1} & O \\ b_{9}\mathbf{1} & O \end{bmatrix}, \ Q_{i} = \operatorname{diag}\{Q_{1i}...Q_{ni}\},$$

$$\mathbf{A}_{i} = \begin{bmatrix} \Lambda + (\chi_{i} + \chi_{i-1,i})I & O & O \\ O & \Lambda + (\chi_{i} + \chi_{i-1,i})I & -\omega\tau Q_{i} \\ O & \omega\tau Q_{i} & \Lambda + (\chi_{i} + \chi_{i-1,i})I \end{bmatrix},$$

$$\mathbf{B}_{9} = \begin{bmatrix} q_{9}I & \frac{c_{9}}{2}I & \frac{b_{9}}{2}I \\ c_{9}I & q_{9}I & O \\ b_{9}I & O & q_{9}I \end{bmatrix}.$$

Параметры матрицы коэффициентов гармонической линеаризации вычисляются как коэффициенты ряда Фурье [11].

Спектральная модель невозмущенного грунта, связанная с m-м цилиндром, согласно (6) и принятым обозначеням в (12), задается равенством

$$\mathbf{x}_{m} = E_{m} \mathbf{\eta}, E_{m} = A_{m}^{-1} \text{blok} \left[\frac{\lambda_{0}}{\lambda} \mathbf{1}_{1} \quad \frac{\lambda_{0}}{\lambda} \mathbf{1}_{n+1} \quad \mathbf{1}_{n} \quad \mathbf{1}_{2n} \quad \mathbf{1}_{3n} \right], \chi_{m-1,m} = 0.$$
 (13)

Приведенную систему квазилинейных алгебраических уравнений (12), (13) будем именовать линеаризованной спектральной моделью массива мерзлого грунта m-го приближения. Учитывая тот факт, что целевые условия управления формулируются чаще по отношению к температурному состоянию первого цилиндра, выражения (12), (13) удобнее разрешать относительно состояния x_2 , являющегося краевым условием m-го приближения по отношению к центральной регулируемой зоне.

<u>Утверждение 2</u>. В предположениях (1)–(10) спектральная терморегулируемая модель центральной зоны массива мерзлого грунта с краевым окаймлением *m*-го приближения имеет вид

$$\begin{cases} \mathbf{x}_{1} = D_{1}\mathbf{x}_{2} + E_{1}\mathbf{\eta} + V_{s}\mathbf{x}_{s} + V_{u}\mathbf{x}_{u}, \\ \mathbf{x}_{2} = W(2)\mathbf{x}_{1} + H(2)\mathbf{\eta}, \end{cases}$$
(14)

где при $H(m)=E_m$ и $i=\{m-1,\ldots,2\}$ выполнено $(I+D_iW(i+1))W(i)=V_i$, $(I+D_iW(i+1))H(i)=E_i+D_iH(i+1)$.

Разрешая систему (11)–(14) относительно спектрального состояния центральной зоны, приходим к искомому результату, отражающему предельные значения вариации температур первого цилиндра массива мерзлого грунта в зависимости от интенсивности свайного возмущения и морозильной компенсацией, в частности от q_{0s} и μ_{9} .

$$(I - D_1 W(2) + V_s D_s + \mu_9 V_u (\mu_9 B_9 + \chi_u A_{1u})^{-1} B_9 I_3 (J_k)) \mathbf{x}_1 =$$

$$= (E_1 + D_1 H(2) + V_s E_s + \mu_9 V_u (\mu_9 B_9 + \chi_u A_{1u})^{-1} E_u) \mathbf{\eta} + V_s \mathbf{e}_s q_{0s}.$$
(15)

В зависимости от интенсивности циркуляции хладоагента или мощности морозильника — μ_9 из соотношения (15) устанавливаются оценки предельно возможных форм термического состояния массива мерзлого грунта.

Замечательное свойство спектрального анализа в том, что по данным $\mathbf{x}_{\scriptscriptstyle \parallel}$ сразу восстанавливаются границы предельных послойных вариаций температур на годовом цикле

$$\theta_1(t) \in [\underline{\theta}_1, \overline{\theta}_1], \ \underline{\theta}_{i1} = q_{i1} - a_{i1}, \ \overline{\theta}_{i1} = q_{i1} + a_{i1}, \ a_{i1} = \sqrt{c_{i1}^2 + b_{i1}^2}$$
 (16)

В приведенной интервальной оценке практический интерес имеет график $\overline{\theta}_{\rm l}$, устанавливающий размер деятельного слоя грунта (глубины оттаивания).

Задача управления мерзлым состоянием глубинных уровней массива мерзлого грунта может быть поставлена как обеспечение предписанных свойств графика $\overline{\theta}_1(x_1)$. В условиях монотонной зависимости x_1 от $\mu_9 \in [0,\infty)$ и q_{0s} регулировочные диапазоны морозильной системы определяются интервалом возможных значений существования градиента $\overline{\theta}_1$:

$$\overline{\theta}_1 \in (\overline{\theta}_1(x_1), \overline{\theta}_1(\overline{x}_1)], \tag{17}$$

где \bar{x}_1 соответствует предельному состоянию растепления, связанного с влиянием сваи при отсутствии термосифона ($\mu_9=0$), т. е.

$$(I - D_1 W(2) + V_s D_s) \mathbf{x}_1 = (E_1 + D_1 H(2) + V_s E_s + V_u B_s^{-1} E_u) \mathbf{\eta} + V_s \mathbf{e}_s q_{0s}$$

а \underline{x}_1 соответствует предельному состоянию морожения, обусловленному действием термосифона с предельно высокой ($\mu_9 \to \infty$) скоростью конвективной хладопередачи

$$(I - D_1 W(2) + V_s D_s + V_u I_3(J_k)) \underline{\mathbf{x}}_1 = (E_1 + D_1 H(2) + V_s E_s + V_u B_{\vartheta}^{-1} E_u) \mathbf{\eta} + V_s \mathbf{e}_s q_{0s}.$$

На основании предложенного метода была построена поверхность распределения максимальных температур массива мерзлого грунта (рис. 3), обустроенного термосифоном. Исходные данные:

- 1) параметры геометрической модели: симметричная послойно-цилиндрическая, радиусы цилиндров $R_i = 0.5*I$ м (i = 1...10), высота слоя 0,2 м, кол-во слоев 50;
 - 2) температура поверхности 30sin(7,172 10⁻⁴t)-4;
 - 3) температура на глубине нулевых годовых амплитуд -2 °C;
- 4) теплофизические характеристики: коэффициент теплопроводности 0,8 ккал/(м $^{\circ}$ C); коэффициент теплоемкости: мерзлого грунта 520, талого 720 ккал/(м $^{\circ}$ C).

На графиках максимальных температур первого цилиндра (рис. 4) видно, что при введении термосифона глубина протаивания уменьшается.

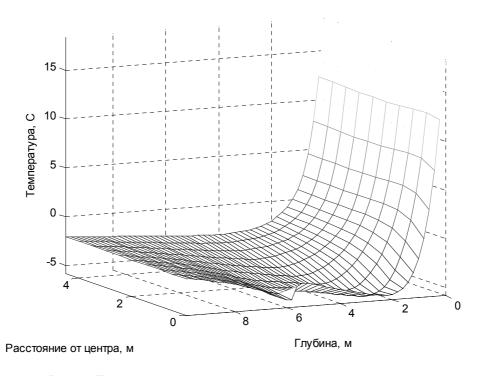


Рис. 3. Поверхность распределения максимальных температур массива мерзлого грунта

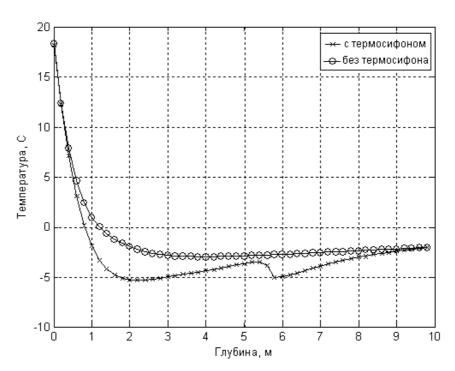


Рис. 4. Максимальные температуры первого цилиндра

ЛИТЕРАТУРА

- 1. *Галкин А. Ф.* Тепловой режим подземных сооружений Севера. Новосибирск: Наука, 2000. 304 с.
- 2. Сморыгин Г. И. Прогноз теплового режима мерзлых горных пород под естественными и искуственными покровами. Новосибирск: Наука, 1980. 190 с.
- 3. Долгих Г. М., Кинцлер Ю. Э., Окунев С. Н. Практический опыт строительства оснований зданий и сооружений в условиях ВМГ. Тюмень: ФУНДАМЕНТСТРОЙАРКОС, 2002. 156 с.
- 4. Дубина М. М., Красовицкий Б. А., Лозовский А. С., Попов Ф. С. Тепловое и механическое взаимодействие инженерных сооружений с мерзлыми грунтами. Новосибирск: Наука, 1977. 144 с.
- 5. Попов Ф. С. Вычислительные методы инженерной геокриологии. Новосибирск: Наука, 1995. 136 с.
- 6. *Кузьмин Г. П.* Подземные сооружения в криолитозоне. Новосибирск: Наука, 2002. 176 с.
- 7. *Самарский А. А., Михайлов А. П.* Математическое моделирование. М.: Физматлит, 2001. 320 с.
- 8. *Бек Дж., Блакуэлл Б., Сент-Клэр Ч.* (мл.). Некорректные обратные задачи теплопроводности. М.: Мир, 1989. 312 с.
- 9. Соловьев И. Г., Власов Е. В., Паньшин А. Е. Алгебраическая схема анализа теплодинамики мерзлого грунта методом гармонической линеаризации // Теория и практика оценки состояния криосферы земли и прогноз ее изменения: Материалы Междунар. конф. Тюмень: ТюмГНГУ, 2006. Т. 2. С. 139–143.
- 10. Соловьев И. Г., Васькевич А. В. Анализ теплодинамики мерзлого грунта методом гармонической линеаризации // Вестн. кибернетики. Тюмень: Изд-во ИПОС СО РАН, 2006. № 5. С. 22–28.
- 11. *Теория* нелинейных систем автоматического регулирования и управления. М.: Наука, 1988. 256 с.

I. G. Solovyev, A. Ye. Pan'shin

LINEARIZED ALGEBRAIC ANALYLSIS OF EXTREME TEMPERATURE CONDITIONS OF FROZEN FOUNDATIONS SUPPLIED WITH FREEZING SIPHONS

The paper considers a method of simulating temperature distribution in frozen soils supplied with freezing siphons, using a method of harmonic linearization. Cited, results of numerical analysis