П. В. Пикинеров, Т. А. Шмелева

ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ ГИДРОХИМИЧЕСКОЙ МОДЕЛИ НЕФТЕЗАГРЯЗНЕННОСТИ ДНА ВОДОТОКА

Рассмотрены вопросы идентификации параметров модели донных отложений на основе разнотемповой схемы измерений состояния дна и водной среды реки.

Надежным индикатором загрязненности территории месторождения, дренированной сетью водотоков, являются показатели качества воды в створах. Эффективность такой схемы контроля определяется прежде всего детальностью представления и адекватностью модельного описания процессов миграции и ассимиляции примесей в водотоках [1], а также точностью контроля состояния качества водной среды.

Предложенная в настоящее время однокамерная гидрохимическая модель участка реки развивает ранее опубликованную [2] и учитывает массообменные процессы между четырьмя кумулятивными зонами: русло реки, береговая зона, ледовый купол и дно с соответствующими массами «подвижного» нефтезагрязнителя (H3) $M_1(t), M_2(t), M_3(t), M_4(t)$. Использованные в модели упрощенные, физически понятные схемы линеаризованного описания массообменных процессов учитывают основные сезонные факторы прямых и вторичных загрязнений водотоков, характерных для гидрохимических условий Среднего Приобья.

где $m_{0}(t) = c_{0}(t) \cdot Q_{0}(t), m_{1}(t) = c_{1}(t) \cdot Q_{1}(t)$ — массовые расходы загрязнителя на входе и выходе камеры, mu(t) — массовый расход контролируемых сбросов, $mp(t) = \mathbf{a}_{u}^{T} \cdot \mathbf{u}(t)$ — массовый расход скрытых сбросов с неизвестным вектором интенсивностей $\mathbf{a}_{u} \in R^{t}, \mathbf{a}_{1}^{T} \cdot \mathbf{v}_{1}(t)$ — процесс биохимической деструкции НЗ в водотоке, в основном проявляющийся в летнее время под воздействием положительных температур ($\Theta_{1}(t)$). Для береговой зоны ($\mathbf{a}_{2}^{T} \cdot \mathbf{v}_{2}(t)$) и дна ($\mathbf{a}_{4}^{T} \cdot \mathbf{v}_{4}(t)$) температурная составляющая биодеструкции ($\Theta_{2}(t)$) дополнится процессами отвердевания и погребения паводковыми на-

носами: $M_2(t_{\rm H}) \cdot (E(t))_+ \cdot (hp(t) - \overline{hp})_+$ и $M_4(t_{\rm H}) \cdot (E(t))_+ \cdot (hp(t) - \overline{hp})_+$ соответственно. Здесь $t_{\rm H}$ — время начала снеготаяния, $M_i(t_{\rm H})$ — состояние со-

ответствующей среды в момент начала снеготаяния, а E(t) — функция снеготаяния (рис. 1). Для льда же (α_3) явно выражено действие гравитационной составляющей.

Из водной среды происходит накопление НЗ на поверхности ледового купола (β_3), дне (β_4), а также береговой полосе ($\beta_1^T \cdot \omega_1(t)$). Поступление на береговую полосу осуществляется в летний период времени, и интенсивность его зависит от уровня воды в водотоке (h(t)).

Предложенная модель учитывает и процессы вторичного загрязнения: например, обратный сток H3 с береговой полосы ($\lambda_2^{\tau} \cdot \omega_2(t)$), в том числе, помимо уровня воды в водотоке, уровень поверхностной влаги (hp(t)) и интенсивность выпадения осадков ($e^{\downarrow}(t)$). Процессы вторичного загрязнения выражены также в виде отдачи с ледового покрова (λ_2) и дна (λ_4).

Под идентификацией понимается отношение $U: I \to \hat{c}$, устанавливающее по информации I о входо-выходных процессах вектор оценок \hat{c} параметров **с** уравнений, связывающих эти процессы. В рамках введенных обозначений блочный вектор искомых параметров

$$\mathbf{c}_{1} = col[\boldsymbol{\alpha}_{1} \quad \boldsymbol{\alpha}_{2} \quad \boldsymbol{\alpha}_{3} \quad \boldsymbol{\alpha}_{4} \quad \boldsymbol{\beta}_{1} \quad \boldsymbol{\beta}_{3} \quad \boldsymbol{\beta}_{4} \quad \boldsymbol{\lambda}_{2} \quad \boldsymbol{\lambda}_{3} \quad \boldsymbol{\lambda}_{4} \quad \boldsymbol{\alpha}_{u}]$$

имеет высокую размерность. Условие идентифицируемости требует значительной представительности данных выборки измеряемых процессов. Типовой набор данных имеет описание:

$$I = \left\langle M_1(t) \quad m_0(t) \quad m_1(t) \quad mu(t) \quad \left| \Theta_1(t) \quad \Theta_2(t) \quad h(t) \quad hp(t) \quad e^{\bigvee}(t) \right| \quad \mathbf{u}(t) : t \in T_1 \right\rangle,$$

где выделены данные о состоянии и динамике загрязнений водной среды, метеоданные о температурах, водности, осадках и индикаторная вектор-функция типизированнных скрытых сбросов. Для простоты анализа типизируются два вида событий — постоянно действующий сброс и кратковременные аварийные сбросы. В названных предположениях выбор индикаторов $u_i(t)$ определяется типом и временем $t_u(i)$ начала действия события, а интенсивность его

α подлежит оцениванию.

Надежность параметрического оценивания модели (1) существенно повышается, если в набор контролируемых данных добавляется переменная $M_{_4}(t)$ — измерения массы донных отложений. В этом случае общая задача разбивается на последовательность из двух более простых с укороченными векторами оцениваемых параметров. Вначале идентифицируется модель донных отложений, а затем на основе полученных результатов решается задача оценки модели «водная среда — берег».

Алгоритм идентификации модели донных отложений

Основные положения теории параметрического оценивания поясним на задаче идентификации модели донных отложений (1).

$$\dot{M}_{4}(t) = -\boldsymbol{a}_{4}^{T} \cdot \boldsymbol{v}_{4}(t) \cdot M_{4}(t) + \boldsymbol{\beta}_{4} \cdot M_{1}(t), \quad t \in T,$$
(2)

где

$$\mathbf{\alpha}_{4}^{T} \cdot \mathbf{v}_{4}(t) = \begin{bmatrix} \alpha_{41} & \alpha_{42} & \alpha_{43} + \lambda_{4} & \alpha_{44} \end{bmatrix} \cdot col \begin{bmatrix} \Theta_{1}(t)_{+} & (\Theta_{1}(t) - \Theta_{10})_{+} & 1 & (hp(t) - \overline{hp})_{+} \cdot E(t) \end{bmatrix}$$

В реальной практике контроля загрязненности водных объектов замеры донных отложений $M_4(t)$ реализуются гораздо реже, чем частота замеров качества воды $M_1(t)$. При надлежащем обустройстве контрольных створов водотока замеры концентрации НЗ могут быть реализованы в автоматическом режиме. Пусть $\Delta t_1 = t_{k+1} - t_k$, достаточно малый период измерений переменной $M_1(t_k) = M_1(k)$ и вектора $\mathbf{v}_4(k)$. Перейдем от (2) к приближенному разностному анализу в дискретном времени.

$$\Delta M_4(k) = -\boldsymbol{\alpha}_4^T \cdot \boldsymbol{v}_4(k) \cdot M_4(k) + \beta_4 \cdot M_1(k), \quad k = \overline{1, N}, \ t_1 = t_{_{\rm H}}, \tag{3}$$

где Δ — оператор правой разности первого порядка с дискретой Δt_1 , т. е. $\Delta x(k) = (x(k+1) - x(k))/\Delta t_1$. В условиях разнотемповости измерений $M_1(k)$ и $M_4(k)$ для построения итеративной процедуры оценивания воспользуемся формализмом операторной алгебры и проведем преобразования (3).

Пусть $a_4(j)$, $\beta_4(j)$ — оценки искомых параметров модели (2) j-го приближения ($a_4(1)$, $\beta_4(1)$ — начальные значения априорно известны).

Представим $\mathbf{a}_4 = \mathbf{a}_4(j) - \delta \mathbf{a}_4(j)$ и перепишем (3) в виде

$$\left(\Delta + \boldsymbol{\alpha}_4(j)^T \cdot \boldsymbol{\nu}_4(k)\right) \cdot M_4(k) = \beta_4 \cdot M_1(k) + \delta \boldsymbol{\alpha}_4(j)^T \cdot \boldsymbol{\nu}_4(k) \cdot M_4(k) \,.$$

Отсюда следует:

$$M_{4}(k) = \beta_{4} \cdot M_{14}(j,k) + \delta \boldsymbol{a}_{4}(j)^{T} \cdot \mathbf{x}_{4}(j,k) + M_{4}(1) \cdot \boldsymbol{e}_{4}(j,k), \quad (4)$$

где $M_{14}(j,k)$ и $e_4(j,k), k = \overline{1,N}$ — процессы, генерируемые цифровыми фильтрами

$$(\Delta + \boldsymbol{\alpha}_{4}(j)^{T} \cdot \boldsymbol{v}_{4}(k)) \cdot M_{14}(j,k) = M_{1}(k), \quad M_{14}(j,1) = 0, (\Delta + \boldsymbol{\alpha}_{4}(j)^{T} \cdot \boldsymbol{v}_{4}(k)) \cdot e_{4}(j,k) = 0, \quad e_{4}(j,1) = 1,$$

$$(5)$$

а **х**₄(*j*,*k*) — вектор функция, удовлетворяющая уравнению

$$\left(\Delta + \boldsymbol{\alpha}_4(j)^T \cdot \boldsymbol{v}_4(k)\right) \cdot \boldsymbol{x}_4(j,k) = \boldsymbol{v}(k) \cdot M_4(k), \quad \boldsymbol{x}_4(j,l) = 0,$$

не может быть воспроизведена из-за отсутствия данных частых измерений $M_{_4}(k)$. Поэтому на основании (4) введем приближенную оценку процесса $M_{_4}(k)$ выражением

$$\widehat{M}_{4}(j,k) = \beta_{4}(j) \cdot M_{14}(j,k) + M_{4}(j,1) \cdot e_{4}(j,k), \quad k = \overline{1,N}, \quad (6)$$

где $M_4(j,l)$ — приближение начального значения в момент времени t_1 . Тогда оценка процесса $\mathbf{x}_4(j,k)$ может быть сгенерирована векторным фильтром по закону

$$\left(\Delta + \boldsymbol{\alpha}_{4}(j)^{T} \cdot \boldsymbol{v}_{4}(k)\right) \hat{\mathbf{x}}_{4}(j,k) = \boldsymbol{v}(k) \cdot \hat{M}_{4}(j,k), \quad \hat{\mathbf{x}}_{4}(j,l) = 0.$$
(7)

С учетом принятых определений (5)–(7) модель (4) может быть записана в линейном регрессионном виде

$$M_4(k) = \mathbf{c}_4(j)^T \cdot \mathbf{z}_4(j,k) + \xi_4(j,k), \tag{8}$$

где

$$\mathbf{c}_{4}(j)^{\mathrm{T}} = col[\boldsymbol{\delta a}_{4}(j) \quad \boldsymbol{\beta}_{4} \quad \boldsymbol{M}_{4}(1)], \ \mathbf{z}_{4}(j,k) = col[\hat{\mathbf{x}}_{4}(j,k) \quad \boldsymbol{M}_{14}(j,k) \quad \boldsymbol{e}_{4}(j,k)],$$

а $\xi_4(j,k)$ — ошибка, обусловленная заменой $\mathbf{x}_4(j,k)$ на $\hat{\mathbf{x}}_4(j,k)$. Для (8) типовая процедура МНК^{*)} [3] оценивания записывается в виде системы линейных алгебраических уравнений

$$\mathbf{F}_{4}(j) \cdot \hat{\mathbf{c}}_{4}(j) = \mathbf{b}_{4}(j), \qquad (9)$$

компоненты которой формируются согласно

$$\mathbf{F}_{4}(j) = \sum_{k \in K_{4}} \lambda_{4}(k) \cdot \mathbf{z}_{4}(j,k) \cdot \mathbf{z}_{4}(j,k)^{T}, \ \mathbf{b}_{4}(j) = \sum_{k \in K_{4}} \lambda_{4}(k) \cdot \mathbf{z}_{4}(j,k) \cdot M_{4}(k)^{T},$$

где $\lambda_{_4}(k) \ge 0, \ \sum_{_{k\in K_4}} {}_{_4}(k) = 1$ — нормировочные коэффициенты, а $K_{_4}$ — множе-

ство номеров моментов времени замеров донных отложений.

На основании изложенного итеративная процедура оценивания параметров модели (3) записывается в виде инструкции:

^{*)} МНК — метод наименьших квадратов.

Начало	
$1.I_4 = \left\langle M_1(k) \mathbf{v}_4(k) k = \overline{1, N}; \ M_4(k), \ k \in K_4 \right\rangle$	— ввод исходных данных
2. $\mathbf{c}_4(1) = col \begin{bmatrix} 0 & \beta_4(1) & M_4(1,1) \end{bmatrix}, \ \alpha_4(1)$	— установка на- чальных настроек
3. <i>j</i> = 1	— начало цикла
4. $z_4(j,k) = col[\hat{\mathbf{x}}_4(j,k) M_{14}(j,k) e_4(j,k)], k = \overline{1,N}$	— генерация регрес- соров (5)–(7)
5. $\mathbf{c}_4(j+1) = \mathbf{F}_4(j)^{-1} \cdot \mathbf{b}_4(j)$	— шаг МНК оценива- ния (9)
6. $\boldsymbol{\alpha}_4(j+1) = \boldsymbol{\alpha}_4(j) - \delta \boldsymbol{\alpha}_4(j+1)$	— коррекция фильт- ров (5), (7)
7. Если $\left(\left\ \mathbf{c}_4(j+1) - \mathbf{c}_4(j) \right\ > \xi_4 \right),$	— условный переход
то $\left(\delta lpha_4(j+1) = 0, \ j \coloneqq j+1 ight)$, на 4	по анализу сходимо- сти
иначе (продолжить)	cina
8. $\hat{\boldsymbol{\alpha}}_4 = \boldsymbol{\alpha}_4(j+1), \ \hat{\boldsymbol{\beta}}_4 = \boldsymbol{\beta}_4(j+1), \ \hat{\boldsymbol{M}}_4(1) = \boldsymbol{M}_4(j+1,1)$	— вывод результа- та оценивания (9)
9. $\boldsymbol{\alpha}_{i}(i+1) = \boldsymbol{\alpha}_{i}(j) - \delta \boldsymbol{\alpha}_{i}(j+1)$	— вывод оценки про-
	цесса ${M}_{4}(k)$ (6)
Конец	

В инструкции ξ₄ — малый параметр точности сходимости, в условиях которой выполняется, согласно (4), (6), отношение следствия

$$\left(\delta\boldsymbol{\alpha}_{4}(j)\overset{j}{\rightarrow}0\right) \Rightarrow \left(\mathbf{c}_{4}(j)\overset{j}{\rightarrow}\mathbf{c}_{4}, \ \boldsymbol{\alpha}_{4}(j)\overset{j}{\rightarrow}\boldsymbol{\alpha}_{4}\right) \Rightarrow \left(\widehat{M}_{4}(j,k)\overset{j}{\rightarrow}M_{4}(k), \ \forall k=\overline{1,N}\right).$$

Анализ сходимости иллюстрируется примером идентификации модели (3) с параметрами из табл. при шаге дискретизации $\Delta t_1 = 1 \ yac$ измерения за-грязненности водотока и периоде наблюдений $T = [138 \div 238] \ \partial ehb$.

Значения	параметров	гидрохимической	модели
----------	------------	-----------------	--------

α_{41}	$\alpha_{43} + \lambda_4$	β_4	$M_4(1)$
0,000002	0,00021	0,002	50,025

 $K_4 = \{138 \ 158 \ 178 \ 198 \ 218 \ 238\}$ — индикаторное множество замеров донных отложений включает 6 точек с периодом в 20 дней (динамика загрязненности дна и водотока, восстановленная на основе принятых модельных положений, изображена на рис. 1).

 $^{^{*)} \| \}mathbf{X} \| -$ длина вектора \mathbf{X} в евклидовой метрике [3].

Рис. 1. Динамика загрязненности M_1 и M_2

Предложенный алгоритм идентификации имеет широкий диапазон сходимости результатов (ошибка по начальным приближениям варьируется от 70 до 40 %), что иллюстрируется графиком пошаговых среднеквадратических отклонений (рис. 2). Истинные значения коэффициентов в среднем определяются за четыре прохода алгоритма.

$$\Delta^{2}(k) = \left\| \boldsymbol{\alpha}_{4} - \boldsymbol{\alpha}_{4}(j) \right\|^{2} + \left(\boldsymbol{\beta}_{4} + \boldsymbol{\beta}_{4}(j) \right)^{2} + \left(M_{4}(1) + M_{4}(j,1) \right)^{2}.$$

Рис. 2. Динамика изменения среднеквадратического отклонения: 1 — ошибка 70 %, 2 — 50 %, 3 — 40 %

Идентификация параметров модели донных отложений позволяет упростить процесс нахождения коэффициентов модели «водная среда — берег». Тем не менее эта задача остается сложной в вычислительном плане как из-за необходимости определения большего количества коэффициентов, так и ввиду использования модели нелинейной регрессии.

ЛИТЕРАТУРА

1. *Дружинин Н. И., Шишкин А. И*. Математическое моделирование и прогнозирование загрязнения поверхностных вод суши. — Л.: Гидрометеоиздат, 1989. — 391 с.

2. *Пикинеров П. В., Шмелева Т. А.* Моделирование нефтезагрязненности водотоков, расположенных на территории месторождений // Вестн. кибернетики. — Тюмень: Изд-во ИПОС СО РАН, 2006. — № 5. — С. 10–15.

3. Фурасов В. Д. Задачи гарантированной идентификации. Дискретные системы. — М.: БИНОМ. Лаборатория знаний, 2005. — 150 с.

P. V. Pikinerov, T. A. Shmeleva

IDENTIFICAION OF PARAMETERS OF HYDROCHEMICAL MODEL WITH RESPECT FOR OIL POLLUTION OF WATERCOURSE' BOTTOM

The paper considers identification questions for parameters of bottom sediments' model, basing on different-in-frequency measurement scheme of river bottom and aqueous medium's condition.