АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И ПРОИЗВОДСТВАМИ

И.Г. Соловьёв, Ю.А. Ведерникова, Д.А. Говорков, А.Э. Рязанцев

БАРОМЕТРИЧЕСКАЯ МОДЕЛЬ УПРАВЛЯЕМОЙ ТЕХНОЛОГИИ ГАЗОДОБЫЧИ УЧАСТКА ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ

Рассмотрены правила составления гидравлической модели системы: «призабойная зона — подъемник — устьевой штуцер — шлейф — газосборная сеть» газоконденсатного месторождения с доминантой газовой фазы потока. Приводятся примеры вычислительного анализа возмущенных режимов эксплуатации.

Газодобыча, технология, управление, модель, давление, объемный расход.

Рассматривается задача анализа режима эксплуатации скважин газоконденсатного месторождения, объединенных газосборной сетью с звездообразной структурой. На рис. 1 представлен луч схемы, объединяющий *m* кустов скважин.

Рис. 1. Схема лучевой ветки системы добычи и сбора газа и газоконденсата

Каждый *i*-ый куст скважин также по звездообразной схеме объединяет n_i -количество скважин, подача которых регулируется гидросопротивлением устьевых штуцеров $u_{ij} \in [0, \infty]$, где $u_{ij} = 0$ соответствует максимальному проходному сечению, а $u_{ij} \rightarrow \infty$ — перекрытому сечению, когда расход q_{ij} газосборной сети обнуляется.

Изображенная схема включает $n_1 + \ldots + n_m$ скважин. Каждая скважина характеризуется переменными состояния и параметрами, как то

*p*_{*Kii} — давление пласта на контуре питания*, [МПа];</sub>

*p*_{Zii} — давление в забое скважины;

 p_{ZVij} — давление затрубное на уровне устья (на рисунке не указано);

 p_{Bij} — давление на буфере (до штуцера);

 p_{ij} — давление после штуцера (устьевое);

 q_{ij} — объемный расход газа, приведенный к нормальным условиям устья, [тыс. м³/сут];

*p*_{*Li*} — давление в узловой точке *i*-ого куста;

 $q_i = q_{i1} + \ldots + q_{in_i}$ — объемный расход в газосборном коллекторе *i*-го куста;

p_i — давление в узловых точках лучевого коллектора с уставкой *p*₀ — в точке соединении с системой осушки и подготовки газа к транспорту;

 $i \in IW = \{1, 2, ..., m\}$ — индексное множество кустов мощностью $\mu IW = m$; $j \in J(i) = \{1, 2, ..., n_i\}$ — индексное множество скважин *i*-го куста.

Задача анализа и оптимизации равновесных режимов эксплуатации газоконденсатных скважин и газосборной сети основана на введении барометрической модели системы: приток — подъемники — штуцер — шлейфы — коллектор. Упрощенное описание технологической схемы [1, 2] с доминантой газовой компоненты потока вводится следующими уравнениями.

Модель притока *<i,j>*-ой скважины [2, 3]

$$p_{Kij}^{2} - p_{Zij}^{2} = b_{ij} \cdot q_{ij} \cdot |q_{ij}| + a_{ij} \cdot q_{ij} + c_{ij}, \qquad (1)$$

где параметры b_{ij} , a_{ij} , c_{ij} оцениваются вначале расчетным путем и доуточняются далее по данным ГДИС [4, 5].

Модель скважины, обустроенной насосно-компрессорной трубой (НКТ),

$$p_{Zij}^2 - p_{Bij}^2 \cdot E_{ij} = r_{Wij} \cdot q_{ij} \cdot \left| q_{ij} \right|, \tag{2}$$

где *r_{Wij}* — параметр гидросопротивления подъемника по НКТ, а функция долевых потерь напора для выходящего потока аппроксимируется линейным сплайном (см. рис. 2)

$$E_{ij} = E_{0ij} + \left(\frac{|q_{ij}|}{q_0} + (1 - \frac{|q_{ij}|}{q_0})_+\right) (E_{1ij} - E_{0ij}),$$

в котором $E_{0ij} = e^{S_{ij}}$ — гидростатические потери, а $E_{1ij} = e^{2S_{ij}}$ — гидростатика, дополненная потерями движения восходящего потока смеси, q_0 — настроечный параметр.

Рис. 2. Функция долевых потерь в скважине

Модели устьевого штуцера, шлейфа <*i,j*>-ой скважины и кустового газосборника имеют описание

$$p_{Bij}^{2} - p_{ij}^{2} = u_{ij} \cdot q_{ij} \cdot |q_{ij}|,$$

$$p_{ij}^{2} - p_{Li}^{2} = r_{ij} \cdot q_{ij} \cdot |q_{ij}|,$$

$$p_{Li}^{2} - p_{i}^{2} = r_{Li} \cdot q_{i} \cdot |q_{i}|,$$
(3)

где r_{ij} , r_{Li} — параметры гидросопротивления схемы кустового газосборника.

Модель путевых потерь напора в лучевом коллекторе определяется параметрами сопротивлений r_i участков

$$p_{1}^{2} - p_{0}^{2} = r_{1} \cdot (q_{1} + \ldots + q_{m}) \cdot |q_{1} + \ldots + q_{m}|,$$
...
$$p_{i}^{2} - p_{i-1}^{2} = r_{i} \cdot (q_{i} + \ldots + q_{m}) \cdot |q_{i} + \ldots + q_{m}|,$$
...
$$p_{m}^{2} - p_{m-1}^{2} = r_{m} \cdot q_{m} \cdot |q_{m}|.$$
(4)

Указанные выше параметры притоков b_{ij} , a_{ij} , c_{ij} , гидростатических потерь подъемника S_{ij} , r_{Wij} и путевых сопротивлений r_{ij} , r_{Li} , r_i оцениваются расчетным путем на этапе проектирования по характеристикам пласта, флюида, конструкциям скважин и газосборной сети, термобарическим режимам ра-

боты системы и уточняются по данным контроля переменных состояния скважин и их испытаний в период реальной эксплуатации [6, 7].

Перейдем к вопросам вычислительного анализа работы технологической системы добычи и сбора газа (газоконденсата) по схеме, как на рис. 1.

<u>Утверждение 1.</u> В условиях (1)÷(4) барометрическая модель равновесных состояний управляемой технологии газодобычи с топологической схемой газосборной сети, как на рис.1, описывается системой уравнений:

$$B_{uij} \cdot q_{ij} \cdot |q_{ij}| + a_{ij} \cdot q_{ij} + C_{ij} = 0, \ i \in IW, \ j \in J(i),$$
(5)

где $B_{uij} = b_{ij} + r_{Wij} + E_{ij}(q_{ij}) \cdot (r_{ij} + u_{ij})$,

$$C_{ij} = c_{ij} + E_{ij}(q_{ij}) \cdot (r_{Lij} \cdot q_{ij} \cdot |q_{ij}| + r_i \cdot (q_i + \dots + q_m) \cdot |q_i + \dots + q_m| + \dots + r_1 \cdot (q_1 + \dots + q_m) \cdot |q_1 + \dots + q_m| + p_0^2) - p_{Kij}^2.$$

Доказательство. Суммируя уравнения (1) и (2), получаем

$$(b_{ij} + r_{Wij}) \cdot q_{ij} \cdot |q_{ij}| + a_{ij} \cdot q_{ij} + c_{ij} + E_{ij}(q_{ij}) \cdot p_{Bij}^2 - p_{Kij}^2 = 0.$$
(6)

Аналогично объединяем (3)

$$(u_{ij} + r_{ij}) \cdot q_{ij} \cdot |q_{ij}| + r_{Li} \cdot q_i \cdot |q_i| + p_i^2 = p_{Bij}^2,$$

подставляя результат в (6). С учетом принятых обозначений (5) можно записать

$$B_{uij} \cdot q_{ij} \cdot |q_{ij}| + a_{ij} \cdot q_{ij} + c_{ij} + E_{ij} \cdot (r_{Li} \cdot q_i \cdot |q_i| + p_i^2) - p_{Kij}^2 = 0.$$
(7)

С другой стороны, объединяя (4) до *i*-го индекса

$$p_i^2 = r_i \cdot (q_i + \dots + q_m) \cdot |q_i + \dots + q_m| + \dots + r_l \cdot (q_1 + \dots + q_m) \cdot |q_1 + \dots + q_m| - p_0^2$$

и подставляя результат в (7), приходим к искомому выражению (5).

Построенная барометрическая модель системы локального участка газоконденсатного месторождения устанавливает связь между сбалансированными объемными расходами скважин и давлениями (1)÷(4) в контрольных и узловых точках схемы. Следует заметить, что при значительных перепадах подпорных давлений p_{Kij} или их постоянном снижении объемные расходы q_{ij} в

слабоподпорных скважинах могут обнуляться и даже в рамках модели (5) менять знак. Такие технологические режимы эксплуатации запрещены, что обеспечивается обустройством устья скважины обратно-запорными клапанами.

В новых предположениях модель технологического режима эксплуатации скважин видоизменяется за счет исключения из полной системы (5) уравнений (и переменных) с отрицательными решениями.

<u>Утверждение 2.</u> Пусть по завершении работы алгоритма расчета состояний модели (5) получены оценки производительности работающих скважин: $q_{ij} > 0$, $i \in IW$, $j \in J(i)$ и установлены номера скважин $\langle \Delta J(1), \ldots, \Delta J(m) \rangle$, для которых противотоки упреждаются обратнозапорными клапанами ($q_{ij} \equiv 0$, $i \in IW$, $j \in \Delta J(i)$), тогда состояния системы в контрольных и узловых точках рассчитываются по следующему алгоритму.

Начало
Для
$$i = \overline{1, m}$$
 выпРасчет расходов кустов. $q_i = \sum_{1}^{n_i} q_{ij}$ $Q_1 = \sum_{1}^{m} q_i$ $Q_1 = \sum_{1}^{m} q_i$ Суммарный расход эксплуатаци-
онного объекта.Для $i = \overline{1, m}$ Расходы по сегментам цен-
трального газосборника. $Q_{i+1} = Q_i + q_i$ Распределение квадрата давле-
ний по центральному газосбор-
ику и в узловых точках кустов. $p_{i}^2 = p_{i-1}^2 + r_{i} \cdot Q_i^2$ Распределение квадрата давле-
ний по центральному газосбор-
ику и в узловых точках кустов.Для $j = \overline{1, n_i}$ выпКвадрат давления на выходе
штуцера или запорного клапана. $p_{ij}^2 = p_{Li}^2 + r_{ij} \cdot q_{ij}^2$ Квадрат давления в забое. $p_{ij}^2 = p_{Li}^2 - h_{ij} \cdot q_{ij}^2 - a_{ij} \cdot q_{ij} - c_{ij}$ Квадрат давление на буфере
скважины. $p_{2Vij}^2 = p_{Zij}^2 / E_{0ij}$ Квадрат давления затрубное на
уровне устья.

<u>Конец</u>

Для $j \in \Delta J(i) \neq ø$ имеем $q_{ij} \equiv 0$, и весь перепад давления возможного противотока $p_{ij} - p_{Bij} > 0$ приходится на запорный клапан.

Доказательство утверждения напрямую следует из определения модели (1)÷(4).

Представленные ниже результаты вычислительного анализа характеризуют работу газоконденсатного участка с топологией сетки сбора, как на рис. 3, и параметрами номинальных режимов эксплуатации из табл. 1 и табл. 2.

Таблица 1

i i		11	12	13	11	15	16	17	21	3.1		
Ι,]	прини.	1,1	۲,۲	1,5	1,4	1,5	1,0	1,7	۲,۱	5,1		
Параметры притоков												
р _{Кіј}	МПа	20,5	25	21	24	22,3	20,15	21	22	25		
b _{ij}	*10 ⁻⁶	20	20	20	20	20	30	40	20	70		
a _{ij}	*10 ⁻⁶	11600	19500	9000	20600	17500	8500	15000	14000	7000		
Cij	*10 ⁻⁶	0	0	0	0	0	0	0	0	0		
Параметры подъемника (2), q ₀ = 54291,5												
r _{Wii}	*10 ⁻⁶	21	26,5	25	23	24	27,5	26	23	26,6		
Sij	*10 ⁻³	88,83	86,556	83,603	88,235	87,396	85,714	86,135	86,976	89,073		
Гидросопротивления штуцеров и шлейфов												
Uij	*10 ⁻⁶	8	8,5	0	7,7	9	0	8,6	7,8	7		
r _{ij}	*10 ⁻⁶	0	0	0	0	0	0	0	0	0		

Параметры притоков, подъемников и шлейфов участка рис. 4

Таблица 2

Гидросопротивления участков

прим.	r _{L1}	<i>r</i> _{L2}	<i>r</i> _{L3}	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃
*10 ⁻⁶	0,06	0,065	_	0,08	0,07	0,075

Давление на выходе коллектора p_0 = 8.3 МПа.

Рис. 3. Пример структурной схемы газосборной системы

Исследовались вариации возмущенных режимов эксплуатации участка от номинальных состояний для трех видов воздействий.

— Последовательное отключение двух высокодебитных скважин: <3,2> и <1,1>.

— Снижение зональных среднепластовых давлений (фактор истощения залежи).

— Рост гидросопротивления r₃ линейного участка (фактор гидратообразования).

Диаграмма распределения давлений и расходов в номинальных условиях эксплуатации приведена на рис. 4, где цветом выделены потери напора в соответствующих сегментах схемы: коллектор — забой — затрубное — буфер — за штуцером — начало шлейфа куста — точка врезки в центральную трубу. Нижняя горизонталь соответствует уровню *p*₀.

Реакция системы по контролируемым переменным q_{ij} , p_{Bij} , p_{ij} при последовательном отключении <3,2> и <1,1> скважин иллюстрируется графиком рис. 5, 2. По вариации устьевых давлений видно, что на перекрытом штуцере, когда $q_{ij} = 0$, входной подпор резко возрастает, а на выходе штуцера устанавливается давление узловой точки шлейфа куста или врезки в коллектор. В случае снижения среднепластовых давлений (рис. 4) наблюдается обратная ситуация, когда противоток на <3,2> и <3,6> скважинах упреждается обратно-запорным клапаном с обратным перепадом давлений — низкое со стороны скважины и высокое со стороны линейного газосборника. Характер поведения системы качественно изменяется при последовательном перекрытии третьего участка газосборника: суммарное снижение расхода, повышение потенциалов на устьях скважин до «газогидратного штуцера», увеличение расхода скважины ниже зоны перекрытия.

Характер поведения системы свидетельствует, что динамика вариаций контролируемых переменных состояния может использоваться в виде диагностических признаков при опознавании уровня действий осложняющих факторов эксплуатации.

Рис. 4. Переменные состояния системы в номинальных условиях эксплуатации

Рис. 5. Переменные состояния системы с параметрами из табл. 1, 2: при последовательном перекрытии скважин <3,2> и <1,1> — верхний ряд, при снижении зональных среднепластовых давлений — средний ряд, при росте гидросопротивления второго участка (рис. 3) газосборника — нижний ряд

10

ЛИТЕРАТУРА

1. *Тетерев И.Г., Шешуков Н.Л., Нанивский Е.М.* Управление процессами добычи газа. М.: Недра, 1981. 248 с.

2. *Маргулов В.Д., Тагиев В.Г., Гергедава Ш.К.* Оптимизация управления газодобывающим предприятием. М.: Недра, 1981. 238 с.

3. Коротаев Ю.П. Эксплуатация газовых месторождений. М.: Недра, 1975. 415 с.

4. Бузинов С.Н., Умрихин И.Д. Исследование нефтяных и газовых скважин. М.: Недра, 1984. 269 с.

5. Черепанов В.В., Красовский А.В., Лапердин А.Н., Ахметсафин С.К., Скрылёв С.А. Моделирование продуктивности газовых скважин. М.: ООО «Газпром экспо», 2013. 264 с.

6. Соловьев И.Г., Говорков Д.А. Факторы устойчивости МНК-оценокпараметров модели притока вертикальной скважины // Автоматизация, телемеханизация и связь в нефтяной промышленности. М.: ВНИИОЭНГЭ, 2009. № 9. С. 31–36.

7. Коротаев Ю.П., Тагиев В.Г., Самородкин В.Д. Оптимизация режимов эксплуатации объектов добычи природного газа. М.: Недра, 1982. 232 с.

Solovyev I.G., Vedernikova U.A., Govorkov D.A., Ryazantsev A.E.

BAROMETRIC MODEL OF CONTROL TECHNOLOGY OF GAS-CONDENSATE FIELD PRODUCTION

Considered rules to evaluate the hydraulic model «bore-hole zone — lift — choke — line — gas gathering network» of gas-condensate field with gas phase of flow being dominant. The examples of perturbed operation modes computational analysis are given.

Pressure, volume flow, pressure drop, hydraulic resistance.